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Abstract. The transport properties of bismuth are investigated within the pseudo-parabolic 
model by using a variational technique. The deformational potentials are accordingly taken 
to depend on the energy of electrons. The energy dependence considered is shown to be a 
general characteristic of the two-band model and is not confined to the case of bismuth, 
The convergence of the method is studied both numerically and analytically. Analytical 
expressions are obtained in the low-temperature range ( T C  77 K) by using two variational 
parameters. For higher temperatures (77 K s T S 300 K) the resistivity and thermoelectric 
power coefficients are calculated numerically to sufficiently high accuracy. 

1. Introduction 

The transport properties of the semimetal bismuth in the presence of a non-quantizing 
magnetic field have been studied by Mikhail etal [I], Hansen and Mikhail [2] and Gitsu 
eta1 [3]. In the first two references a so-called pseudo-parabolic model, which depends 
mainly on the Lax non-parabolic dispersion relation and a relaxation time having a 
specific energy dependence, has been utilized. In Gitsu er a i  [3] a variational technique 
has been employed to find the solution of the Boltzmann equation as a power series in 
energy. However, the convergence of their method deteriorated for non-parabolic 
dispersionand theirresultswere thusobtainedonlyfortheparaboliccase. It was pointed 
out in Hansen and Mikhail[2] that the deterioration in the results of Gitsu etaI[3] may 
be due to their assumption concerning the energy dependence of the matrix element of 
electron-phonon interactions (Mcl.ph). In their analysis this matrix element is taken to 
be independent of energy, unlike the case of the pseudo-parabolic model. 

The primary aim of the present work is to calculate the transport tensors of bismuth 
by usinga variational technique in which all the essentialfeaturesof the pseudo-parabolic 
model are retained. Thus from the analytical point of view the basic differences between 
the present treatment and that of Gitsu et a I [3 ]  are in the form of the dispersion relation 
and in the energy dependence of The dispersion relation is taken here to be non- 
parabolic and is taken to depend on energy according to the result of Heremans 
and Hansen [4]. The energy dependence ofthe deformational potentials, which are the 
quantities that appear in thecalculations, has beenretrievedfrom theenergydependence 
of These were taken to be independent of energy in Gitsu el al [3]. Also, as 
regards the numerical calculations, the temperature dependence of the deformational 
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potentials was obtained in Gitsu et a1 [3] by treating them as fitting parameters, and the 
masses of electrons and holes were taken to be independent of temperature. In the 
present calculations the whole set of input data of the pseudo-parabolic model (from 
Mikhail era1 [I]  and Hansen and Mikhail[2]) will be used after the convergence of the 
variational method is achieved. 

It has further been shown analytically that three of the six quantities that determine 
the convergence of the method take fixed values. at any temperature. regardless of the 
number of variational parameters involved in the calculations. The convergence of the 
variational method would thus depend only on the convergence of the other three 
quantities. The convergence has, then, been studied numerically and has been found to 
be very fast, as we never used more than six terms of the power series to attain a 
sufficiently high accuracy. 

Analytical expressions for the transport coefficients have also been obtained in 
the low-temperature range, where it is shown that the calculations can be performed 
satisfactorily by using two variational parameters. Most of the expressions obtained are 
found to agree with the corresponding results of the relaxation-time approximation [ 1, 
4.51. Also, the expressions for the transport coefficients in zero magnetic field will be 
identical with those of the parabolic model if the Fermi energy is related to the parabolic 
Fermi energy in the usual manner. This is, in fact, one of the prime advantages of the 
pseudo-parabolic model [4]. The convergence of the method has also been investigated 
analytically in this temperature range. It is found that the method should converge 
whether the deformational potentials are taken to depend on energy according to the 
pseudo-parabolic model or to be energy-independent. It seems, therefore, that the 
energy dependence of may not be the main reason for the deterioration of 
convergence in Gitsu et ai[3], at least in the low-temperature range. 

Some of the results have also been re-evaluated by using the parabolic dispersion 
relation and the same procedure used in Gitsu et a1 [3]. The motivation for such re- 
evaluation is to investigate the role of the off-diagonal deformational potential element, 
which was not taken into account by Gitsu et al[3,6]. It is found that this element may 
have an appreciable effect. 

The last motivation of the work is to investigate further the pseudo-parabolic energy 
dependence of the electron-phonon matrix element. In order to study the dependence, 
Heremans and Hansen (41 used an adjustable parameter. The value of this parameter 
was then retrieved from the experimental data of the zero-field thermoelectric power 
coefficients of bismuth. The result seems, therefore, to be restricted to the case of 
bismuth. It will, however, be shown in the present work (appendix 1) that the energy 
dependence of Me,,, obtained in [4] is valid, in general, for the Lax two-band model. It 
can thus be used for all group V semimetals and narrow-gap materials. 

The present work is arranged in the following way. In section 2 the bases of the 
pseudo-parabolic variational technique and the general expressions for transport tensors 
are given. Analytical expressions for some of the basic quantifies are derived in section 
3. These expressions are valid at any temperature. The analytical study in the low- 
temperature range is performed in section 4, while the convergence of the method in 
this temperature range is investigated in section 4.1. The numerical calculations and 
results for T 3 77 K are finally displayed in section 5. 

2. Variational method and transport tensors 

The distribution function for charge carriers (electrons and holes) may be expressed in 
the form 

I F I Mikhail and I M M Ismail 
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f p  =f: + (-af:/Wv,, (1) 
wherep and E are the momentum and energy of an electron or a hole, fj is the Fermi- 
Dirac equilibrium distribution and qP is a measure for the deviation from equilibrium. 
Within the pseudo-parabolic model [4] the relation between E andp is given by the Lax 
non-parabolic dispersion relation: 

y(E) = E(l + E/E,) = bpm-lp (2) 
where m is the effective-mass tensor and EG is the energy gap. Also, following Gitsu er 
af [3], qp may be expanded as 

where Bo = l /kBT and ui are the components of the group velocity. In (3) C: are 
variational parameters whose values can be obtained by substituting from (1) in the 
linearized Boltzmann equation of charge carriers [7] and applying the variational method 
in the presence of electric and magnetic fields [S, 91. The solution should, of course, 
depend strongly on the form of the collision operator and the types of scattering mech- 
anismsinvolved. In the present article it will be assumed, as has been consistentlydone 
in previous work, that thescattering of carriers is mainly due to interactions with acoustic 
phonons. In Gitsu et a1 [3,6] the scattering term due to electron-phonon interactions 
has been expressed in terms of the elements D, of the deformational potential tensors 
of electrons and holes. These elements were taken in their work to be independent of 
energy for both non-parabolic and parabolic dispersions. It was felt at the beginning of 
this work that such an assumption may be the main reason for the deterioration of 
convergence in the numerical calculations of Gitsu etal[3]  for non-parabolic dispersion. 
This, however, will be discussed in more detail in the following two sections. 

In the present work the calculations are based on the pseudo-parabolic model. 
Accordingtothismodelandthepresentcalculationsinappendix 1, thesquaredelectron- 
phonon matrix element is taken to vary with energy as 

M L P b  cc (U')-* y' = dy/dE (4) 

D, = ( y ' ) - ] D ;  (5) 

rather than being constant. This will lead directly to deformational potential elements 
that depend on energy as ( y ' ) - I .  We may thus take 

where D& is independent of energy. The results of Gitsueral[3] would then be modified 
according to equation (5). The final expressions for the electrical and thermal currents 
( J ,  Q) and for the transport tensors of a single group of carriers are found to be 

J = @)% - O(B)V,T 

Q = T@(B)% - &(B)F,T 
(6a) 

(6b) 
and 

w(B) = en(p-l  + b,,B)-I 

@(B) = Sen(p-'  + b,B)-' (7) 
C(B) = We+-] + bEB)- ' .  

Here % and F,T are the effective electric field and temperature gradient, B and B are 
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the magnetic field vector and antisymmetric tensor, e is the positive charge, and n is the 
density of carriers. Also 
p = (e/a)((oKu)/"L~'*)r-l  
S = ( k B / Z e ) ( o K S ) / ( d o )  

bo = Z ' L ~ / ( o B u )  

bF = z(DL:n/(a~o))(eKe)/(eBe) 

I F I Mikhail and I M M lsmail 

W = (Tk~ /e2 ) (eKe) / (do )  

be = z(oL:i'/(oKo))(oKe)/(oBB) 
a = ( 6 e ~ ~ z / ~ h 4 ) [ ( D ~ , ) 2 / ~ I l ] ( 2 d e t  m)1/2 (8) 

( d o )  = L,L,1L, 
withsimilarexpressionsfortheotherbrackets(. . .). Here,Z = -1 and +1 forelectrons 
and holes respectively; cI, is a component of the elastic constant tensor while p stands 
for the mobility tensor; r is a tensor that is off-diagonal in the effective-mass frame and 
whoseelementsdependon the ratios D22/D11 = D$/D?l andD33/Dll = Dg/D: , .  The 
formsoftheelementsof raregiven in Gitsuetal[3]. Somemodifications, however,are 
considered here in an appendix. Also, Loand Leare either row or column vectorst while 
L, and LE are second-order symmetric tensors. The elements of L,, Lo, L, and LE are 
defined respectively by 

(L,)$, = J+'L?2 

where 

(use) = L,L,lL, 

(L& =*+lL"2-vFsL3': s=O,l ,  ... (L& = S L y  - I  
(9) 

(LB)s, = *+rL3/2 -2 ~~ s, r =  O , l , .  . , 

q = E/€),, qF = E,/O,, P = @,/EG and EF is the Fermi energy. 
From the analytical point of view, the difference between the present results and 

those of Gitsu et a1 [3] is reflected in the definition of the tensor L,, which is defined in 
Gitsu er a1 [3] by 

The differences in the numerical techniques and input data used in both treatments will 
be discussed in section 5. 

Finally the same approach used in Hansen er al [5 ]  can be employed to express the 
transport tensors (equation (7)) in the form 

(LK)rr = J+'L* 0 s , r = O , l ,  . . . .  (11) 

o ( B )  = en[l + b?G(B?)]-I[p - b,pBp + bZ, det(p)BB] 

E(B) = Wen[l + b f G ( B * ) ] - ' [ p - b g p B p + b $ d e t ( p ) B B ]  ( 1 2 4  

G(B2) = det(l + Bp) - 1. (13) 

o ( B )  = en{p - b o p B p  +b:[det(p)BB - G ( B 2 ) p ] }  

O(B) = Sen{p - b e p B p  + b$[det(p)BB - C(B*)p]}. 

(12a) 
(12b) O(B) = Sen[l + b;G(B2)]-'[p - bepBp  + b$ det(p)BB] 

and 

where 

Also, for weak magnetic fields equations (12a) and (126) can be expressed in the form 

and 
(140) 

(14b) 

t For simplicity the same symbol is used throughout for the vector and its transpose 
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3. General analytical results 

The convergence of the present variational method depends on the convergence of the 
six brackets (. . .), which, in turn, determine the parameters bo, be, be, S. Wand the 
mobility tensor p .  General analytical expressions will be derived here for three of these 
brackets. These expressions are valid at any temperature and are independent of the 
number of variational parameters involved in the calculations. They can be obtained in 
the following way. 

It is readily shown that the integrals "Li: satisfy the following recurrence relation for 
any k :  

(15) 

(16) 
In equation (16), Lo is decomposed into two parts; the first is identical with the first row 
and first column of LE while the second is proportional to the second row and second 
column of L,. Hence 

" L " - "  t - Lk-1 m + 2P"+LL,m,. 

(L,,). = $L?'? = *L?; + Z @ ~ + ~ L Y ;  
Accordingly 

s = 0, 1,. . . . 

where (CO), is the cofactor of LE corresponding to the element 
is used to obtain the last step. Similarly, 

and equation (15) 

where 7 = y/&. Also, by making use of (15),Lgcan be decomposed in the same manner 
asin (16) and thus 

(ese) = 2Ly* - 2qF ' L i y  + & ' L y  = J'= (-afo/aVh73i'(q - %)' dv. (19) 

Furthermore, equation (17) implies that 

6 ,  = Z (20) 
for any number of variational parameters. The results displayed in equations (17), (18), 
(19) and (20) are quite general. They do not depend on the energy dependence of the 
deformational potentials and are valid for both non-parabolic and parabolict disper- 
sions. These results have also been confirmed numerically. It seems that they have not 
been noticed by earlier workers [31. In our opinion, this may be one of the main reasons 
for the deterioration of convergence of their results for non-parabolic dispersion. 

In the pseudo-parabolic relaxation-time treatment [l], the coefficients equivalent to 
6 ,  are equal to 2 in the low-temperature range only. Accordingly, equation (1'2~) will 

t The proof for parabolic dispersion is much simpler but the final results take the same form with 9 being 
replaced by 7. 
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be identical with the corresponding results of Mikhail ef al [ l ]  at low temperatures and 
will start to differ from them at high temperatures. Also, the expressionsfor the 12 weak- 
field galvanomagnetic coefficients of bismuth, which can be retrieved from (14a). will 
be equivalent to the standard expressions of Hartman [ lo]  at all temperatures, unlike 
the case of the relaxation-time approximation. 

I F I Mikhail and I M M Ismail 

4. Analytical calculations in the low-temperature range 

The aim of the calculations in this section is to derive some analytical expressions within 
the variational approach which could be compared with the results obtained by using a 
relaxation-time technique [I ,  4 , 5 ] .  In addition, these expressions would then be used 
to confirm the validity of the energy dependence of D,,, which is displayed in equation 
(9, and to investigate analytically the convergence of the variational method. 

In the low-temperature range the integrals "Lr can be performed by using the 
Bethe-Sommerfeld expansion. It can consequently be shown from equations (17), (18) 
and (19) that 

(UBU) = @ (om?) = (z~/z)YM { e m )  = ( z 2 / 3 ) y y 2  (21) 
where 7F = ?(EF) and y;  = y ' (EF) .  As regards the three brackets (do), (oK0) and 
(OKB) ,  it has been found that the calculations with one variational parameter lead to 
unreasonable results, in contradiction to a remark made by Gitsu er a/ [3]. The cal- 
culations should thus be carried out with two variational parameters. Great care, 
however, must be taken when expanding the results in powers of ( k B T / E F )  since most 
ofthe leadingtermswill becancelled. It can beshownafterafairamountofmanipulative 
algebra that 

(do) = p F  ( o m )  = ( ~ 2 1 3 ) ~ ;  (em) = (n2/3)yF. (22) 

b 5 = Z  bo  = 2Z/3 (=a) 

Consequently we find by using equations (21) and (22) that 

ks  n2 kBT 
a(0)  =SI  = ---I W =  TLo Ze  3 E; 

where Lo = (n2/3)(kB/e)* is the Lorenz number, a(0) is the thermoelectric power for a 
single group of carriers in zero magnetic field (partial Seebeck coefficient) and 
E; = yF/y; .  The result obtained for a(0)  agrees with the corresponding result found 
by using the pseudo-parabolic relaxation time 141. Moreover, it is readily shown that 
FF stands for the corresponding parabolic Fermi energy. Accordingly, the numerical 
values of a(0)  for pseudo-parabolic and parabolic models will be identical. Also, the 
result obtained for W leads to an expression for the thermal conductivity that satisfies 
the Wiedemann-Franz law. 

The comparison, in the low-temperature range, of equations (126, c)  and (146) with 
thecorrrspondingresultstofMikhaiIeta1 [l] shows that thevalueofbEgiveninequation 
(23a) is identical with the value of the equivalent coefficient in Mikhail et al [I]. As 
regards the coefficient bo, it seems impossible to make a general analytical comparison. 

t The corrcsponding expression for &E)  is not given explicitly in Mikhail era/ [ I]. However, it can be easily 
obtained in a manner similar to that used in deriving equations (180) and (186) [l]. 
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However, in the limit of weak magnetic field it can be shown that the equivalent value 
of bs in Mikhail et a1 [ 11 is Z/2  while the equivalent value of b i  is zero. Both of the two 
values do not agree with equation (23a). In view of this disagreement, the expressions 
for the 16 weak-field thermomagnetic coefficients of bismuth, which can be obtained 
from (14b), will not be identical with the results of Hansen eral [SI. 

It can thus be concluded that within the pseudo-parabolic model the differences that 
might occur at low temperatures between the results of the variational and relaxation- 
time methods will arise mainly due to the coefficient bo. 

Finally, it may be of importance to rederive equations (23a) and (23b) by using 
deformational potential elements that are independent of energy. The results will 
correspond to the case considered in Gitsu et af [3] .  It is found that the only coefficients 
that will be affected are those which depend on the bracket (oK6'). Accordingly, bF and 
W take the same values as given in equations (23a) and (23b) while 

a(0) = SI = ( k , / Z e ) ( ~ z / 3 ) ( k B T / y F y ; ) l  and bo = 3 Z / ( Y ; ) ~ .  (24) 

It isreadily shown that the result obtained above for a(0) will be identical with the result 
of the relaxation-time approximation [ S ,  111 if the appropriate energy dependence of 
the relaxation time is taken ( r  oc y-L/*(y')-l). The numerical values of a{O), however, 
will differ substantially from the values of the parabolic model. 

4.1. Convergence in the low-temperature range 

In the first part of section 4 reasonable results have been obtained, at low temperatures, 
by using two variational parameters. Here, it will be shown that the addition of a third 
variational parameter will leave these results unaltered up to the first-order approxi- 
mation in powers of (kBT/EF) .  This in a sense means that the results converge in the 
low-temperature range to the expressions given in (22) and (230, b). In order to show 
this, we consider the three brackets ( d o ) ,  (oK8) and (OK@ and use the following 
formula, which depends on the partition of matrices [12] :  

(XA-] Y) l+  1 = (XA-'q1 + [X  - ( X A - l n ) l ] [ ~ - ( Y A - L ~ ) l l ~ ~ - ( n n - '  a),] - I  (25) 

where X and Y are either row or column vectors and A is a second-order symmetric 
tensor. The subscript j in (XA-'Y)l means that 

X - { X , , s = O , 1 , , . .  , j - 1 )  Y = { Y , , s = O , 1 , . . _ ,  j - I }  

A - { A , , s ,  r = 0,1, .  . . , j - 1) 

Also, 

11 x = xi Y = YI Cl = {Ai., r = 0,1,. . . , j - l}, 

If we now take j = 2 in equation (25) then (XA-'Y),,, and (XA-'Y)i will represent one 
of the three brackets, being calculated respectively by using three and two variational 
parameters. The second term on the RHS of equation (25) will thus represent the 
correction due to the addition of the third variational parameter. For the three brackets 
it is found that the correction term can be neglected with respect to the term (XA-]Y)>; 
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Table 1. Comparison between the order of the terms on the RHS of equation (25) for the 
three brackets (oKo), (oKBi and (OKO) with j = 2. Each term is expressed as R(k,T/&)' 
and the numbers in the table refer 10s. 

Correction 
Bracket (XA-'I')> UJ - (nA-'n)? x - (XA-'n), y - (YA-'n), term 

see table 1. Accordingly, (XA-IY),  = (XA-lY)? and hence the results converge in this 
sense. The sameconclusion isalso found when thedeformationalpotentialelementsare 
taken to be independent of energy. The results of Gitsu el a[ [3] may thus converge in 
the low-temperature range for non-parabolic dispersion. 

5. Numerical calculations and results in the high-temperature range 

At high temperatures (T  3 77 K), the transport tensors of a single group of carriers can 
be calculated numerically from equation (12). The total transport tensors of bismuth 
can then beobtained by summing thecontributionsfrom its four groupsof carriers. The 
resistivity and thermoelectric power tensors can finally be evaluated from the relations 

p(B) = a-'@) and m(B)  = a - l ( B ) O ( B )  (26) 

where a(B) and O(B) refer to the total tensors. 

5 .  I .  Non-parabolic dispersion, pseudo-parabolic model 

As has been pointed out previously, the elements of the deformational potential tensor 
have been taken to be independent of energy in Gitsu et a1 (31. However, they have 
considered the temperature dependence of these elements in the high-temperature 
range. For the elements Dg and D:, (e and h refer to electrons and holes), the tem- 
perature dependence has been retrieved from the experimental data of p3) and ell in 
zero magnetic field. The ratios (Du/D,l)'.h and (D33/Dll)e.h have been assumed to be 
independent of temperature and equal to their values in the low-temperature range, 
which could be obtained from the measurements of Walther [13]. 

In the present analysis the deformational potentials are taken to depend on energy 
as given in equation (5). Thus, the temperature dependence of DE and Dp: cannot be 
obtained from the findings of Gitsu ef a1 [3]. Moreover, the assumption that the ratio 
(D!2/DPI)e is independent of temperature is certainly invalid for the pseudo-parabolic 
model where the scattering should increase rapidly with temperature along the bisectrix 
direction to compensate for the drastic decay ofthe masselement nr;. It has been readily 
shown in Mikhail and Ismail [14] that the scattering along this direction at T = 300 K 
should be higher by more than two orders of magnitude than its value at T = 77 K. In 
view of this, DYC and DY; must be taken to vary independently with temperature in the 
ease of the pseudo-parabolic model. Their values should then be obtained by treating 
them as independent adjustable parameters to  fit the experimental data of weak-field 
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galvanomagnetic and thermomagnetic coefficients. This, however, seems to be very 
complicatedsince the dependence of these coefficients on the ratio D$/D$ is through 
double integrals that determine the elements of r. In the present work a much simpler 
technique will be utilized. The only quantities that depend on the deformational poten- 
tials are the mobilityelements ofelectronsand holes (p  = ( e / a ) ( aKu) /0 t~~2) r - ' ) .  Thus 
the variational procedure will be carried out until the brackets (oKu), ( d e )  and (OK€') 
converge to  a sufficiently high accuracy. When convergence is achieved, the values of 
the mobility elements of electrons and holes will be taken from the results of Mikhail er 
al [llt. So in the present calculations there is no need to find explicit values for the 
deformational potentials 0:. However, the procedure employed is equivalent to choos- 
ingthevaluesofthesepotentials(aftertheconvergenceisobtained)sothat themobilities 
of the pseudo-parabolic model are reproduced. 

The input data for the present calculations are thus identical with those given in 
figure 1 and table 1 of [l] and in table 1 of [2]. The variational procedure is carried out 
in successive steps. In each step, an additional variational parameter is included. The 
procedure is performed until the maximum difference between the corresponding values 
of the brackets (oKu), (&e) and (BKO) in two successive steps is less than 1%. We 
never needed more than six variational parameters. The resistivity and thermoelectric 
power tensorsareevaluatednumerically asfunctionsofthemagnetic fieldfor T >  77 K. 
The results are found to agree quantitatively with the results of the pseudo-parabolic 
relaxation-time model [l, 21 as well as with the experimental data reproduced in those 
two references. The results of some of the thermoelectric power coefficients are dis- 
played in figures 1, 2 and 3. Also, the limiting behaviour in strong non-quantizing 
magnetic fields has been studied analytically, for all coefficients, by using equations 
(12a) and (126). The results obtained agree entirely with those of the relaxation-time 
approximation [ l ,  21. 

5.2. Parabolic dispersion 

In spite of the fact that the main goal of the present numerical calculations is to evaluate 
the transport tensors for the pseudo-parabolic model, some of the results have been re- 
evaluated by using parabolic dispersion in order to investigate the following. 

In Gitsuetal[3] thedefonnationalpotential tensorofelectronsis taken tobediagonal 
in the mass frame of the principal ellipsoid. Walther [13]. however, measured the 
elements of this tensor in the crystallographic frame at T = 4.2 K. Hansen [15] found 
that if the results of Walther are rotated to the mass frame they will still give an 
appreciable value to the off-diagonal element DL. He pointedout further that this may 
be due to the large discrepancies in the measurements of Walther [ 131. In a recent article 
by Lavrenyuk and Minina [16] the deformational potentials of bismuth have been 
measured in the crystallographic frame with relatively small discrepancies. The rotation 
of the new set of measurements leads to the same conclusion found by using the results 
of Walther [13]. This may confirm the importance of the role played by the off-diagonal 
element D&. The effect of this term will thus be considered here. The expressions for 
the coefficients &, i = 1,2,3,  which determine the elements of r should accordingly be 
modified to include the term D&. Furthermore the expression for Z3 given in Gitsu eral 

t The values of the mobility elements which could be obtained from thc fittingof (14a) to the experimental 
results may differ from those reported in Mikhail eral [I] .  since b, = 1. However, it seems reasonable IO use 
the whole set of input data of the pseudo-parabolic model. 
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8 , I Y I 1 . 3  8 , I Y l n ~ ' l  

Figure I .  Graph of m d B I )  against the magnetic field 
B ,  at T = 77, 180, 2M) K ( pseudo-parabolic vari- 
ational calculation). The corresponding pseudo- 
parabolic relaxation-time results and experimental 
dataaregiveninfigures.4~. bolMikhailelal[1]. infigures7a. botMikhaile~al[I]. 

Figure 2. A plot of e,,(BJ versus B2 at T = 77. 180. 
260 K, for the pseudo-parabolic variational calcu- 
lation. The corresponding results of the relaxation. 
time approximation and experimental data are given 

(31 is found to be slightly in error (some signs are reversed). The modified expressions 
as well as the correct expression for Z 3  are given in appendix 2 of the present article. 

The elements of r should be calculated at first in the mass frame using the results 
given in Gitsu et ai 131 and the modified expressions for E; given in the appendix. The 
temperature dependences of and D:1 are taken to be identical with the results of 
Gitsu et ai [3]. Also, the ratios D,, /Dtl  are taken to be independent of temperature. 
Their values are thus taken from the results of Walther at T = 4.2 K. According to these 
results, 

DC1 =2.2eV Dg, = -6.13eV 0; = 1.93eV D;? = -0.677eV 

in the mass frame of the principal electron ellipsoid and 

D:, = D$ = -1.2eV D &  = 1.2eV 

in the mass frame of the hole ellipsoid (the crystallographic frame). The mobility tensor 
ofelectronsobtainedfrom equation (8)shouldfinally (after theconvergenceisachieved) 
be rotated to the crystallographic frame. The effect of amending the incorrect signs in 
the expression for X3 is found to be negligibly small both on the mobility elements as 
well as on the resistivity and thermoelectric power coefficients. On the other hand, 
appreciable changes have been noticed due to the consideration of the off-diagonal 
element 0 5 3 .  As regards the mobilities of electrons, their relative ratios as well as their 
absolute values are improved so that they approach the corresponding data of the 
pseudo-parabolic model used in section 5.1. Also, in figure 4 the results obtained for the 
resistivity element ptl(Bt) are given. It is readily shown from this figure that the relative 
deviation due to Os3 in the saturation value of pII(BI) is of the order of 6% at T = 77 K. 
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FigurrJ.Graphofn,,(B,) - m\,(O)againstB,atT= Figure 4. Graph of p,,(B,) - p,,(O) against E ,  at 
77, 140, 260 K (pseudo-parabolic variational cal- T = 71.300 K for parabolic dispersion. The full and 
alation). The corresponding pseudo-parabolic broken curves refer respectively to the case when the 
relaxation-time results and experimental data are off-diagonal deformational potential D; istaken into 
given in figures90, b of Mikhail era1 [I] .  account and when its effect is neglected. 

For T = 300K, themaximumdeviationinp,,(B,) isfoundto be 11% at B ,  = 0.5T. The 
deviations in the other elements of p and (Y are found to be of the same order. 

6. Conclusions 

The numerical results obtained for most of the resistivity and the thermoelectric power 
coefficients are in good quantitative agreement with the corresponding results of the 
relaxation-time approximation and with the experimental data. However, the com- 
parison with the latter should only be considered below the Landau quantization limit. 
Also, the convergence of the method has been confirmed strongly, from both the 
analytical and numerical points of view. The energy dependence of the deformational 
potentials, within the pseudo-parabolic model, has given rise to results that are almost 
identical with the findings of the relaxation-time approximation. Moreover, it has been 
shown that the off-diagonal element of the deformational potential tensor may have a 
reasonable effect on the mobilities and transport coefficients. 
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Appendix 1. The energy dependence of the electron-phonon matrix element 

Here, we show that the relation M:l.ph .X (y ' ) - '  is valid in general for the  Lax two-band 
model. We first note that forthe two-bandmodeltheparabolicHamiltonianfi,isrelated 
to the non-parabolic Hamiltonian by 

I F I Mikhail and I M M Ismail 

A, = A(1 + !?/Ec). (Al . l )  

If fi is perturbed by H then I?, will be perturbed by f i b ,  where 

H6 = I? + H'(H/Ec)  + ( H / E c ) H '  + ( H ) ' / E G .  (A1.2) 

The term (&)*/Ec is a second-order term and can thus be dropped. Accordingly, the 
matrix elements due to a transition between two electron states of wavevectors k and k' 
are related by 

C W x l f i ~ l W v )  = (1 + E, , /EG + Ex/Ec)(VxIA'\ylx.) (A1.3) 

where Ex and EA. are the eigenvalues of the unperturbed Hamiltonian & in the two 
states. The above relation is general for any perturbation H' not necessarily due to an 
electron-phonon interaction, For an electron-phonon interaction Ex = Ext.  since the 
energy of phonons is much less than the energy of electrons. Hence, 

(~~~lHlq~,)=(~~lA~l~~,)/Y' Y ' = d y / d E ~  = 1 + 2 E k / E c .  (A1.4) 

This leads to the relation MeCph = (Mp)el.ph/y', which, in turn, gives the required energy 
dependence of Mel.ph. 

In the above derivation the same wavefunctions were used for both the parabolic 
and non-parabolic models. This is similar to the procedure used in Hansen [17] for the 
calculation of the velocity operator. In a more general treatment we may use the 
wavefunctions of the two-band model to find the non-parabolic electron-phonon matrix 
element. In this respect, we should note that A&-,, results mainly from the change of 
the crystal potential that occurs due to lattice vibrations. It may thus be supposed that 
A' is independent of electron spin and accordingly we may simplify the forms of two- 
band wavefunctions given in Mikhail and Ismail [I41 to be 

v k c  [(€kc + + E C ) l ' / 2 ( ~ X I  + [(hk . F ) / ( E k  + E G ) l q E )  ( A l S a )  

vh = [ - E , / ( - %  - ~ ~ ) i ~ ~ ~ ( - [ ( h k . ~ ) l ( - ~ ~ ) l r i r ~ ~  + y l d  (A1.5b) 

where 

qk, =exp(ik.r)u,(r) j =  1.2 E G y ( E , )  = i i ' ( k - f ) ( k . t * )  

r =  ( ~ l l f i / m " l ~ b )  E ,  = - EkC - EG. (A1.6) 

In the above, c and v refer to the conduction and valence bands; u I ( r )  and U&) are, the 
periodic wavefunctions at the bottom of the conduction band and the top of the valence 
band respectively; p is the momentum operator; and ma is the mass ? fa  free electron. 
I t  is worthwhile noticing that A(1 + f i /Ec)  = H(l + H/EG),  where H = - H - Ec. A 
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perturbation of fi by H is therefore equivalent to a perturbation of k by I? = - A'. 
We may therefore have 

(vx<lli'lvxc) = CW*I~ lWx . , ) .  (A1.7) 
If we further take Ek = Ex. then equations (A1.7) and A(lSa, b) give 

C W k l l ~ l Y k d  = - ( W k ? I H I W * ' ? ) .  (A1.8) 
In the rest of the calculations we use only v k c ,  since we are interested in intra-valley 

interactions. The suffix c will be dropped for simplicity. Equations (A1.3) and (A1.4) 
still hold, but (yk/fi;lWx.? will not represent directly the parabolic matrix element. By 
making use of equation (Al.%) this element can be expressed as 

(A1.9) 

The coefficients a., can be obtained by direct substitution from (Al.%). The matrix 
elements on the RHS of (A1.9) can be calculated by substituting from (A1.2) and using 
the relations 

f i W k 1  = exp(ik.r)(h/mo)k.pul &vx2 = exp(ik.r)[-Ec; t ( f z / m o ) k . p ] u 2  
(A1.lO) 

together with similar relations for WYi, j = 1,2. For example 

(~xzjfi;,I~x.,) = (+,,E,) [(u?lexp(-ik.r)A'exp(ik' .r)k' . p i u l )  

+ (u,lk . p  exp(-ik. r)fP exp(ik' . r ) lu l ) ] .  (Al . l l )  

In order to proceed we consider that {U I ,  U?} is a complete set, which is one of the basic 
assumptions of the two-band model, and use the even and odd parities of U ,  and U*. 

Accordingly 

( W u l f i ~ I W v ~ ? =  (~~IE,)[(W~*IHIWK'~)~'.~* + k*P(Wxil*lW~i?l. (A1.12) 

If we further take Ex =Ex .  and use (A1.8) then ( W k 2  Ifi;,/qrl) = 0. The other terms of 
(A1.9) can be calculated in the same manner. By making me of (A1.8) the final results 
are 

(W,x,lqlvx.j) = 0 i f s # j  
(A1.13) 

The second equation in (A1.13) is expected since each of the two terms (qkilfibl~!x.i), 
j = 1, 2 ,  represents the parabolic matrix element with respect to a wavefunction of a 
single band. It is readily shown that the sum of the coefficients of these two terms in 
(A1.9) is equal to one if Ex = Ek.. Hence 

Cvxl f i ; lWk, )  = ( W ~ l f i 6 1 W k , p )  (A1.14) 

wherev,,standsforawavefunctionofasingleband,either t p , , o r ~ # ~ ~ .  Equation(A1.14) 
together with (A1.4) gives 

(A1.15) 

which yields the required relation between Mel-ph and (Mp)el.ph and the required energy 
dependence of 

~Wxl l f i ; , lYk~l )  = ( W x M ; , I W x 2 ) .  

( W x  IA'l W x )  = ( W ~ I f i 6 I W k ~ P ) / Y '  
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Appendix 2. Elements of the tensor r 
The elements of the tensor r are given in Gitsu et a1 [3] in the form of double integrals 
over the polar and azimuthal angles (8 and p) of the momentum-phonon space. These 
integrals depend on the quantities Xi, i = 1 ,2 ,3 .  As has been previously mentioned in 
section 5.2 the expressions for these quantities need to be modified to include the effect 
of the off-diagonal deformational potential DL. The modified expressions take the 
form: 

I F I Mikhail and I M M lsmail 

(A2.1) 

(A2.2) 

(A2.3) 

wherem,.m,,m,are themasselementsinthemassframeofreference,St(= sin O,Ca = 
cos 8, S, = sin p, C, = cos q ~ ,  a = sin A,  B = cos A ,  r = (cIt - C ? ; ~ ) / ( C ~ ? ;  - cq4), h is the 
tilt angle and c,.are the elasticconstants. Also, (RG),standsfor the correspondingresults 
of Gitsu rfaZ[3] while (ARG)3 is the amended expression for X3 without taking Du into 
consideration and is given by 

( A R G ) ~  = [ ( D ~ / D ~ ~ ) ( I  + r)l” - I ] ( ~ Z , / ~ , ) ’ / ~ ~ C Z , S , S ~  

t [(D33/D11)(1 + r)I” - l](m3/mt)I~2,f3C~S~C~ 
+ (,Du/Dtl)(m2/mt)5/2[(1 + r)t!2 - 1 1 (Y P S.$a ’ ’ 

+ ( d m l  )(m3/m t 

+ (D33/Dlt)(m3/m,)3’z[(1 + r ) @  - {1)1P.’c; 
PS&%C~(DZZ/D It )[az - B2 

- 2a2(1 + r)’;’] + (D3,/DII)[B2(1 + r)’D +{a2}]) 

+ (m3/ml)(m2/ml)‘~2 ~ S , S , C ~ ( ( D ~ / D , ~ ) [ L Y ~ ( I  + r)I1’ + P’] 
+ (D33/Dll)[@2 - cu2} - 2(1 + r)li’B2]). (A2.4) 

The above form differs from the corresponding result of Gitsu el a1 [3] in the terms 
between curly brackets {. , ,}. The signs of these terms have been reversed. 
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